Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ajayi Deborah Olayide"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Hamiltonian Complete Number of Some Variants Of Caterpillar Graphs
    (arXiv preprint, 2025-04) Onaiwu Kingsley Nosakhare; Adefokun Tayo Charles; Ajayi Deborah Olayide; Ogundipe Opeoluwa Lawrence
    A graph G is said to be Hamiltonian if it contains a spanning cycle. In this work, we investigate the Hamiltonian completeness of certain classes of caterpillar graphs, which are trees with a central path to which all other vertices are adjacent. For a non-Hamiltonian graph G, the Hamiltonian complete number H(G) is the minimum number of edges that must be added to G to make it Hamiltonian. We focus on both regular and irregular caterpillar graphs, deriving explicit formulas for H(G) in various cases. Specifically, we show that for a regular caterpillar graph Gn(k) where each vertex on the central path is adjacent to k leaves, H(Gn(k)) = n(k−1). We also explore irregular caterpillar graphs, where the number of leaves adjacent to each vertex on the central path varies, and provide bounds for H(G) in these cases. Our results contribute to the understanding of Hamiltonian properties in tree-like structures and have potential applications in network design and optimization.

DSpace software copyright © 2002-2025 Abba & King Systems LLC

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback