Models for Prediction of Global Solar Radiation On Horizontal Surface for Akure, Nigeria

dc.contributor.authorAkinnawo Olumide Olufemi
dc.contributor.authorOludotun James Samuel Oladunjoye
dc.contributor.authorUsifo Abel Giwa
dc.contributor.authorAdejuwon Samuel Oluyemi
dc.date.accessioned2025-06-02T15:52:29Z
dc.date.available2025-06-02T15:52:29Z
dc.date.issued2016
dc.description.abstractThe estimation of global solar radiation continues to play a fundamental role in solar engineering systems and applications. This paper compares various models for estimating the average monthly global solar radiation on horizontal surface for Akure, Nigeria, using solar radiation and sunshine duration data covering years 1981 to 1995. The analysis was performed using Angstrom models, two dimensional principal component analysis (PCA) and adaptive neuro-fuzzy inference system (ANFIS). The performance of the models were tested using statistical indicators such as mean bias error (MBE), mean percentage error (MPE), root mean square error (RMSE) and correlation coefficient (CC). The results indicated that ANFIS and linear regression analysis provide relatively higher degree of prediction, with the performance of ANFIS slightly better.
dc.identifier.citationAkinnawo, O. O. et al. (2016). Models for Prediction of Global Solar Radiation On Horizontal Surface for Akure, Nigeria. Global Journal of Pure and Applied Sciences. 22; 43-50.
dc.identifier.issn1118-0579
dc.identifier.urihttps://repository.crawforduniversity.edu.ng/handle/123456789/230
dc.language.isoen
dc.publisherGlobal Journal of Pure and Applied Sciences
dc.relation.ispartofseries22
dc.titleModels for Prediction of Global Solar Radiation On Horizontal Surface for Akure, Nigeria
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ajol-file-journals_87_articles_145830_submission_proof_145830-1033-385422-1-10-20161013 (1).pdf
Size:
1012.65 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: